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Abstract: An intelligent strategy for the protection of AC microgrids is presented in this 

paper. This method was halving to an initial signal processing step and a machine learning-

based forecasting step. The initial stage investigates currents and voltages with a window-

based approach based on the dynamic decomposition method (DDM) and then involves the 

norms of the signals to the resultant DDM data. The results of the currents and voltages 

norms are applied as features for a topology data analysis algorithm for fault type 

classifying in the AC microgrid for fault location purposes. The Algorithm was tested on a 

microgrid that operates with precision equal to 100% in fault classification and a mean 

error lower than 20 m when forecasting the fault location. The proposed method robustly 

operates in sampling frequency, fault resistance variation, and noisy and high impedance 

fault conditions. 
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1 Introduction1 

HE major aim of power system protection strategies 

is to save the system safely with minimum failures 

and outages. To accomplish so, protection methods try 

to separate the faulted parts of the system only. To do 

this mission effectively, protection devices and 

algorithms must have high precision for fault detection, 

classifying, and location. The time which spends on 

protection tools to employ correctional acts has been 

reduced especially in recent years. These results have 

been achievable by presenting time-domain protection 

algorithms like the traveling waves idea, higher 

sampling frequency of the signals measuring, and 

developed strategies to extract the processed signals’ 

information. The most famous of these strategies is the 

discrete wavelet transform (DWT) [4-5] and 

mathematical morphology (MM) [6]. 
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   Study on distribution grids protection has also offered 

the advantages of using deep learning (DL) and machine 

learning (ML) manners in the missions of fault location 

and fault classification [7]. 

   Deep learning and DWT-based approaches mixed for 

protection usages such as fault location, detection, and 

classification are presented [8-12]. For MM approaches, 

this has also been explored [13, 20]. Other than [12], 

these methods generally need signals of at least a couple 

of milliseconds to be able to achieve the required 

protection plan. However, the result in [12] illustrated 

that even in 0.1 ms window of a combined DWT and 

ML method can classify and locate faults in a power 

grid. Ref [14] investigates the power quality 

disturbances such as a single line to ground and three 

phase faults using the dynamic mode decomposition. 

The dynamic decomposition method (DDM) is a 

suitable instrument for network signal processing in 

disturbances of faults [14]. The approach proposed in 

[14] showed the real value of the DDM eigenvalues 

differences in faulted cases. This research suggests an 

intelligent method to classify and locate faults based on 

the combination of the DDM technique in [14] and ML. 

   In this study, DDM is used to calculate the 

eigenvalues of the system. The suggested method 

initially receives time signals related to the DDM 

eigenvalues of the voltages and current signals. Then 

T 
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ℓp-norms are employed to get metrics from the DDM 

signals which are then used as the features of an ML 

algorithm, which was selected to be a topology data 

analysis (TDA). The paper illustrates the importance of 

the features for the classification and location missions. 

The method is tested in the distribution system as [12]. 

The main contribution of the presented algorithm was 

that the mean forecast error for the fault location task 

was decreasing from 62% to 21% compared with [12]. 

Because the results in [12] show an accuracy of 100%, 

those results cannot be improved but were matched by 

the proposed method. 

   The rest of the paper is organized as follows. The 

power system used in this work is presented in 

Section 2. The algorithm of fault location and 

classification with DDM and Topological data 

analysis (TDA) is presented in Section 3. The 

evaluation of the proposed strategy in the test system is 

illustrated in Section 4. The performance of this 

approach is presented in Section 5. 

 

2 The Test AC Microgrid 

   The test AC microgrid is illustrated in Fig. 1. This AC 

microgrid is connected to a network and several 

renewable power generations consist of solar panels and 

wind turbines. This network supplies the 400 kVA loads 

with different-length 11 kV and 0.4 kV lines. The main 

network is connected to the microgrid by a 63/11 kV 

voltage level transformer. This network’s data is 

presented in the appendix. 

   This grid’s studied faults included single phase to 

ground (AG, BG, CG), phase to phase (AB, AC, BC), 

double phase to ground (ABG, ACG, BCG), three-phase 

(ABC), and three phase to ground (ABCG). 

   The fault resistances values are: 0.01, 0.5, 2, 5, 10, 25, 

and 50 Ω. It also equals 500 and 1000 Ω to investigate 

the high impedance fault conditions. One thousand 

various faults are simulated in this paper. This 

microgrid was simulated in PSCAD/EMTDC. 

   The currents and voltages of the network for various 

faults with various resistances are measured. The three-

phase currents and three-phase voltage signals are 

shown in Figs. 2 and 3 for a sample SLG (CG) fault 

condition which is simulated in the line FA of the test 

microgrid. The fault occurred at 2 milliseconds between 

phase C and ground. These signals take from 

simulations of the system in Fig. 1 but polluted with 

Gaussian noise. These signals have a signal-to-noise 

ratio (SNR) of 35%, which is the level of noise applied 

in this study. According to Fig. 2, the faulted phase 

current increased after fault time. Moreover, according 

to Fig. 3, the voltage of faulted phase is decreased and 

the voltage of other phases is increased. Furthermore, 

the currents and voltages signals of a three-phase (ABC) 

fault condition on the FA line are shown in Fig. 4 and 

Fig. 5. The three-phase short circuit fault occurred at 2 

milliseconds. According to Fig. 4, the currents of all 

phases increased after fault occurrence time.

 

 
Fig. 1 AC test microgrid. 
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Fig. 2 The three-phase currents in an SLG fault condition. Fig. 3 The voltage signals for an SLG fault condition. 

 

 
 

Fig. 4 The current signals in an (ABC) fault condition. Fig. 5 The voltage (RMS) signal in an (ABC) fault condition. 

 

3 Protection Strategy 

   In this section, the suggested algorithm for ac 

microgrid protection is presented. The methodology 

uses a window of 100 µs of voltage and current 

measures from the microgrid by 50 µs coming before 

and 50 µs coming after the fault detection. These data 

were studied with the DDM and norms-based metrics. 

The data generated in the metrics step is utilized to train 

an intelligent algorithm for fault location and another 

for fault classification. 

 

3.1 The Dynamic Decomposition Method 

   The eigenvalues and eigenvectors of the system are 

calculated by the dynamic decomposition method. 

DDM is a system dynamics estimation method from 

measured signals [15], [16]. This algorithm calculates 

the most suitable linear dynamics of the system for 

which the information is captured even if that system is 

nonlinear. The Koopman (or composition) operator 

which approximates by DDM is a linear, infinite-

dimensional operator that can represent nonlinear 

systems on a (Hilbert) space of measure parts of its 

condition. The Koopman operator has the ability to 

illustrate nonlinear dynamics by existing as an infinite-

dimensional operator, even though it is linear [17]. 

   The Koopman operator can be a DDM that identifies 

the finite-dimensional linear system’s eigenvectors 

(values) that can be considered as estimates of the 

infinite-dimensional Koopman operator. Furthermore, 

The DDM is a technique of dimension reduction that, at 

its core, the singular value decomposition is used. 

Shown a sequential set of measures, {v1, v2, ..., vn} 

where vi ∈ ℝn and ∀i = 1 … n, taken from a system at 

standard intervals, DDM calculates 
 

1j jv Av   (1) 
 

which is a linear technique of representation that catches 

the dynamics present in the set of the measurements. 

The DDM input formally is a measurement set of 

signals and two following matrices are outputs: 
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N includes the system’s eigenvalues and Θ is the matrix 

that corresponds right eigenvectors. Importantly that the 

r is the relevant dimension of the DDM technique which 

is determined by the user. (r ≤ n and for r = n the DDM 

has not reduced the dimension). It has been explained 

that DDM is a capable approach for power systems and 

their disturbances signals studies [14]. In [14] a 

window-based algorithm used the DDM to power 

network signals distortion detection due to events in the 

grid. The supplementary information about the DDM 

technique is in [15, 16]. 

   The dimension of the outputs of the DDM technique is 

determined to be 3 (r = 3). Currents set, voltages set, 

and a set with both currents and voltages are assumed as 

input signals and analyzed at once. Before using the
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Fig. 6 Fluctuations of the eigenvalue δ1 for each fault type. 

 

signal of currents and voltage by the DDM method, the 

signals were normalized for the input of the DDM in 

this latter case. 

   The first DDM eigenvalue’s real part, δ1 is illustrated 

in Fig. 6 for each type of fault. The data of a 100 µs 

window around the fault beginning time was utilized to 

obtain these effects of the measurements in Fig. 2. This 

figure displays that δ1 fluctuates happened after the 

fault occurrence time, for all DDM window lengths 

assumed. 

 

3.2 Signal Norms 

   The ℓp-norm defines for one-dimensional discrete 

signal in ℝn 
 

1
|| || | | 1

n qq
q jj

v v q


      (4) 

 

This function executes ℝn → ℝ ≥ 0, in which ℝ ≥ 0 is 

the set of non-negative parts of real number sets. 

   For q = 1, (4) describes the taxicab norm, for q = 2, 

Eq. (4) represents the Euclidean norm (energy of the 

signal), and when q = ∞, (4) describes the infinity norm. 

These norms have the following property 
 

2 1|| || || || || ||v v v   (5) 
 

This study uses the 1, 2, and ∞ norms which are defined 

by 
 

1 1
|| || | |

n

jj
v v


  (6) 

2
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   (7) 

1
|| || max j

j n
v v

 
  (8) 

 

   The norms in this study are applied to the signals 

received from the DDM method such as those shown in 

Fig. 4 as a method to encapsulate their inherent data. 

Fig. 7 displays a sample of this method for the 1-norm 

of δ1 as a function of the fault location for a single phase 

fault condition that emphasizes the changes due to the 

fault resistance variation. 

 

3.3 Fault Detection 

   According to Sections 3.1 and 3.2, fluctuations of the 
 

 
Fig. 7 Fluctuations of the eigenvalue δ1 for each fault type. 

 

norm of δ1 used for fault detection. 

 

3.4 TDA-ML for Fault Location and Classification 

   Topological data analysis (TDA) is a new emergent 

domain that aims to find topological hidden data of a 

dataset. TDA methods have been employed to design 

filters and topological descriptors to enhance Machine 

Learning (ML) approaches. This paper applies a method 

of machine learning that used TDA instantly to multi-

class classification issues. The used algorithm creates a 

filtered simplicial complex on the dataset. Persistent 

Homology (PH) is used to conduct the sub-complex 

selection of unlabeled points to obtain the label with the 

majority of votes from marked near points. 

   Using the simulation setup described in part 2 for the 

microgrid in Fig. 1 creates 8000 various fault 

conditions. The current, voltage, and a mixture of 

current and voltage for each case are studied with DDM, 

and measures are created by the abovementioned norms 

in Part 2. The conditions which are simulated for each 

case, are as follows. 

 Three measurements (voltages, currents, and voltage 

and currents together). 

 Real part of the three eigenvalues of DDM. 

 Five sampling frequencies (500, 1000, 2000, 5000, 

and 20000 Hz). 

 Five window sizes (100, 200, 400, 800, and 1000 

points). 

 Five quantities of fault resistance. 

 Five amounts of SNR (10, 20, 35, 50, and 60 

percent). 

 Three norms (1, 2, and ∞-norm).  

   These amounts are employed as features for a TDL-

based ML as the chosen approach in this study for fault 

location and classification duties. 

   The suggested TDA-based strategy was more suitable 

than the KNN and weighted version of KNN. It acts 

competitively with Random Forest baseline and Local 

SVM classification methods in balanced datasets, and it 

has better performance than all baseline approaches of 

classification involved and minority categories. 

   According to the abovementioned sections, the 

flowchart of the proposed intelligent algorithm is 

illustrated in Fig. 8. The voltage and current sets 

sampled from the network applied to DDM (1)-(3) to 

estimate the δ1. The δ1 norms are calculated by (6)-(8). 

The norms of the δ1 applied to TDA-ML-based fault 

location and classification algorithm. 
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Fig. 8 proposed method flowchart. 

 

4 Results in the Test System 

   This section illustrates the results of employing the 

TDA-ML-based fault location and classification 

algorithm, which is presented in part III, to a dataset of 

simulated faults data taken from the test microgrid in 

Fig. 1. In this study two independent TDA-ML are 

generated, one for the fault-location duty and the other 

for the classification aim. 64 percent of the 8000 

simulated cases were used for the training. The 1280 

cases created the validation set and 1600 fault 

conditions for the test set. 

 

4.1 Fault Classification Task 

   The goal of this duty is to identify the occurred fault 

type, either SLG, DL, DLG, 3L, or 3LG. The TDA-ML 

obtained in this study was learned by the 

abovementioned features for each of the 6400 

simulation fault conditions that were marked 

consequently. The performance of the TDA-ML 

classification method on the testing dataset is:  

 Accuracy equal to 100%. 

 Recall 100%. 

 F-score equal to 100%. 

 Precision equal to 100%. 

   These performances are equal to the results of [12] 

which the initial processing step was based on the DWT 

and the noise-less signals. Furthermore, this study 

utilized the TDA-ML’s feature importance for 

classifying. Fig. 9 shows the 20 characteristics that are 

important for the TDA-ML classifier. The TDA 

algorithm is utilized to calculate the feature importance 
 

 
Fig. 9 Feature importance for fault classification. 

 

Table 1 The mean error and standard deviation. 

Method Ref. [12] Suggested algorithm 

Deviation 34.77 20.23 

Mean error 62.95 21.25 
 

from different-norm of δ1 with various window sizes. 

This successive method did the feature importance and 

feature selection by correlation analysis. The results in 

Fig. 9 show these factors employ both the δ1 infinity 

norm and 2-norm. In this figure, C, V, and M stand for 

currents, voltages, and mixed signals respectively. 

Furthermore, Fig. 9 illustrate that all sizes of window 

and signals are used in the classification mission. The 

TDA-ML method discovers valuable details at various 

DDM resolutions. 

 

4.2 Fault Location Task 

   The purpose of this duty is to identify the occurred 

fault distance. This is a regression assignment that was 

approached by another TDA-ML trained by the same 

type of dataset that the classifier was trained in. The 

major difference is that the labels in this problem are the 

fault distance. The network of TDA-ML is defined by a 

group of variables which is hyperparameters. These 

hyperparameters define important items like the 

minimum number of leaves. These items finally 

determine the TDA-ML’s performance. 

   This research completes randomized search cross-

validation to determine the most suitable group of 

parameters for the fault-location mission among a big 

dataset of candidates. The fault distance forecasting 

with the TDA-ML trained in this paper has the mean 

error and legal deviation illustrated in Table 1. This 

table also shows the same parameters for [12]. This 

table represents that the suggested method has 

decreased about 66% of the average error and around 

42% of the legal partition [12]. 

   The 20 most important factors for the fault location 

regression are presented in Fig. 10. Alike the classifier 

results, the results of Fig. 10 say that the selected 

elements are associated with the real part 

eigenvalue (δ1), 2-norm, and the infinity norm. 

Additionally, these features are based on the currents, 

and voltages but not in the case that mixes them 

together.
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Fig. 10 Feature importance for fault location. 

 

Table 2 Results of fault location and classification method. 

Simulated Fault 
Estimated fault sampling frequency 
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n
 [%

] 

AG 

AB 10 50 25 AG 26 AG 24 AG 27 AG 23 AG 25 

AC 30 25 40 AG 39 AG 41 AG 39 AG 40 AG 41 

FA 60 5 65 AG 63 AG 63 AG 65 AG 66 AG 64 

AD 70 0.5 15 AG 16 AG 15 AG 16 AG 14 AG 16 

AE 50 100 90 AG 92 AG 92 AG 88 AG 92 AG 91 

BG 

AB 10 50 25 BG 24 BG 25 BG 27 BG 24 BG 26 

AC 30 25 40 BG 41 BG 42 BG 40 BG 41 BG 39 

FA 60 5 65 BG 67 BG 64 BG 63 BG 66 BG 66 

AD 70 0.5 15 BG 15 BG 16 BG 14 BG 15 BG 15 

CG 

AB 10 50 25 CG 26 CG 23 CG 27 CG 24 CG 25 

AC 30 25 40 CG 40 CG 41 CG 38 CG 41 CG 42 

FA 60 5 65 CG 65 CG 63 CG 66 CG 63 CG 67 

AD 70 0.5 15 CG 14 CG 15 CG 15 CG 15 CG 14 

AE 50 100 90 CG 93 CG 90 CG 91 CG 92 CG 89 

AB 

AB 10 50 25 AB 27 AB 25 AB 25 AB 26 AB 26 

AC 30 25 40 AB 39 AB 40 AB 43 AB 39 AB 39 

FA 60 5 65 AB 65 AB 65 AB 65 AB 63 AB 63 

AD 70 0.5 15 AB 16 AB 15 AB 15 AB 16 AB 16 

AE 50 100 90 AB 88 AB 90 AB 89 AB 92 AB 92 

AC 

AB 10 50 25 AC 25 AC 25 AC 24 AC 24 AC 27 

AC 30 25 40 AC 41 AC 41 AC 41 AC 41 AC 39 

FA 60 5 65 AC 64 AC 64 AC 63 AC 67 AC 65 

AD 70 0.5 15 AC 16 AC 16 AC 15 AC 15 AC 16 

AE 50 100 90 AC 91 AC 91 AC 92 AC 92 AC 88 

BC 

AB 10 50 25 BC 26 BC 26 BC 25 BC 26 BC 27 

AC 30 25 40 BC 39 BC 39 BC 42 BC 41 BC 40 

FA 60 5 65 BC 66 BC 66 BC 64 BC 65 BC 63 

AD 70 0.5 15 BC 15 BC 15 BC 16 BC 14 BC 14 

ABG 

AE 50 100 90 ABG 25 ABG 25 ABG 23 ABG 27 ABG 27 

AB 10 50 40 ABG 42 ABG 42 ABG 41 ABG 39 ABG 38 

AC 30 25 65 ABG 67 ABG 67 ABG 63 ABG 65 ABG 66 

FA 60 5 15 ABG 14 ABG 14 ABG 15 ABG 16 ABG 15 

ACG 

AD 70 0.5 90 ACG 89 ACG 89 ACG 90 ACG 88 ACG 91 

AE 50 100 25 ACG 26 ACG 27 ACG 25 ACG 24 ACG 25 

AB 10 50 40 ACG 39 ACG 39 ACG 42 ACG 42 ACG 43 

AC 30 25 65 ACG 63 ACG 63 ACG 64 ACG 65 ACG 65 

BCG 

FA 60 5 15 BCG 16 BCG 16 BCG 14 BCG 16 BCG 15 

AD 70 0.5 90 BCG 92 BCG 92 BCG 91 BCG 89 BCG 89 

AE 50 100 90 BCG 92 BCG 90 BCG 90 BCG 90 BCG 90 

AB 10 50 25 BCG 25 BCG 25 BCG 25 BCG 25 BCG 25 

ABC 

AC 30 25 40 ABC 42 ABC 40 ABC 43 ABC 40 ABC 40 

FA 60 5 65 ABC 64 ABC 65 ABC 65 ABC 65 ABC 65 

AD 70 0.5 15 ABC 16 ABC 15 ABC 15 ABC 15 ABC 15 

AE 50 100 90 ABC 91 ABC 90 ABC 89 ABC 90 ABC 90 

AB 10 50 25 ABC 24 ABC 25 ABC 24 ABC 25 ABC 25 

ABCG 

AC 30 25 40 ABCG 42 ABCG 40 ABCG 39 ABCG 41 ABCG 40 

FA 60 5 65 ABCG 66 ABCG 64 ABCG 63 ABCG 67 ABCG 65 

AD 70 100 15 ABCG 14 ABCG 16 ABCG 15 ABCG 17 ABCG 15 

AE 50 100 90 ABCG 89 ABCG 90 ABCG 92 ABCG 93 ABCG 90 

AB 10 50 25 ABCG 25 ABCG 26 ABCG 25 ABCG 24 ABCG 25 

 

5 Performance of the Method 

   To examine the proposed method in the test 

microgrid, different types of faults were simulated with 

different conditions in terms of the location of faults, arc 

resistance, and type of faults. Using the suggested 

method distance and category of simulated faults are 

obtained and presented in Table 2. According to the 

results in Table 2, the suggested algorithm operates 

accurately in different fault conditions. 
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Fault resistance and high impedance fault 

conditions: Due to the simulation results in Table 2, the 

suggested method detects, locates, and classifies several 

faults with various arc resistance very accurately. 

Additionally, to investigate the high impedance 

condition several faults with 500 and 1000Ω fault 

resistance are simulated. The presented method has 

good performance in high impedance fault detection and 

classification. 

Sampling frequency: The signals of currents and 

voltages are digitalized by various sampling frequencies 

between 0.5-20 kHz. The results are in Table 2. The 

proposed approach’s precision and accuracy are not 

changed with sampling frequency variation. 

Noise effect: The measured signals are populated by 

Gaussian noise with SNR between 10-60%. The 

performance of the presented method has negligible 

changes with the different signal-to-noise ratios. 
 

6 Conclusions 

   This paper proposes a new intelligent approach to 

locating and classifying faults in AC microgrids. The 

suggested technique decomposes the current and voltage 

signals by the dynamic decomposition method. The 

measures on the ℓp-norms are applied to resultant 

signals from the DDM. These measures become the 

features of a topology data analysis-based machine 

learning method. The presented technique is tested in 

signals on a test ac microgrid in noisy conditions, 

sampling frequency, and fault resistance variations and 

have high impedance fault condition with high 

performance. The data needed in the suggested 

algorithm is only a 100 µs window which is remarkably 

smaller than most existent methods. This approach is 

shown to have a precision of 100% in the classifying 

mission and forecasting the error of approximately 20m 

for the fault location mission. The mean error of fault 

location is near 60% of the one reference for the power 

grid. Importantly the suggested approach operates 

properly in any AC microgrid, regardless of network 

topology. 
 

Appendix 

Table A1 Test system lines data. 

 Resistance Inductance Voltage 

Overhead line 120 mΩ/km 0.23 mH/km 11 kV 

Cable 100 mΩ/km 0.15 mH/km 380 V 

 

Table A2 Test system generation data. 

 Nominal power Voltage 

Wind 20 kW 0.4 kV 

Diesel generator 12 kVA 11 kV 

Photovoltaic 80 kW 11 kV 

Main AC grid 5 MVA 11 kV 

Battery 20 kW 11 kV 
 

Table A3 Test system transformers data. 

 
Nominal 

power 

HV side 

Voltage 

LV side 

Voltage 

Between A and C 500 kVA 11 kV 400 V 

Between E and F 8 MVA 11 kV 380 V 
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